Lethal Giant Larvae Controls the Localization of Notch-Signaling Regulators Numb, Neuralized, and Sanpodo in Drosophila Sensory-Organ Precursor Cells
نویسندگان
چکیده
Asymmetric distribution of fate determinants is a fundamental mechanism underlying the acquisition of distinct cell fates during asymmetric division. In Drosophila neuroblasts, the apical DmPar6/DaPKC complex inhibits Lethal giant larvae (Lgl) to promote the basal localization of fate determinants. In contrast, in the sensory precursor (pI) cells that divide asymmetrically with a planar polarity, Lgl inhibits Notch signaling in the anterior pI daughter cell, pIIb, by a yet-unknown mechanism. We show here that Lgl promotes the cortical recruitment of Partner of Numb (Pon) and regulates the asymmetric distribution of the fate determinants Numb and Neuralized during the pI cell division. Analysis of Pon-GFP and Histone2B-mRFP distribution in two-color movies confirmed that Lgl regulates Pon localization. Moreover, posterior DaPKC restricts Lgl function to the anterior cortex at mitosis. Thus, Lgl functions similarly in neuroblasts and in pI cells. We also show that Lgl promotes the acquisition of the pIIb cell fate by inhibiting the plasma membrane localization of Sanpodo and thereby preventing the activation of Notch signaling in the anterior pI daughter cell. Thus, Lgl regulates cell fate by controlling Pon cortical localization, asymmetric localization of Numb and Neuralized, and plasma-membrane localization of Sandopo.
منابع مشابه
Sanpodo controls sensory organ precursor fate by directing Notch trafficking and binding γ-secretase
In Drosophila peripheral neurogenesis, Notch controls cell fates in sensory organ precursor (SOP) cells. SOPs undergo asymmetric cell division by segregating Numb, which inhibits Notch signaling, into the pIIb daughter cell after cytokinesis. In contrast, in the pIIa daughter cell, Notch is activated and requires Sanpodo, but its mechanism of action has not been elucidated. As Sanpodo is presen...
متن کاملNumb Inhibits the Recycling of Sanpodo in Drosophila Sensory Organ Precursor
In metazoans, unequal partitioning of the cell-fate determinant Numb underlies the generation of distinct cell fates following asymmetric cell division [1-5]. In Drosophila, during asymmetric division of the sensory organ precursor (SOP) cell, Numb is unequally inherited by the pIIb daughter cell, where it antagonizes Notch [1, 6-8]. Numb inhibits Notch partly through inhibiting the plasma memb...
متن کاملLethal Giant Larvae Acts Together with Numb in Notch Inhibition and Cell Fate Specification in the Drosophila Adult Sensory Organ Precursor Lineage
The tumor suppressor genes lethal giant larvae (lgl) and discs large (dlg) act together to maintain the apical basal polarity of epithelial cells in the Drosophila embryo. Neuroblasts that delaminate from the embryonic epithelium require lgl to promote formation of a basal Numb and Prospero crescent, which will be asymmetrically segregated to the basal daughter cell upon division to specify cel...
متن کاملNumb Independently Antagonizes Sanpodo Membrane Targeting and Notch Signaling in Drosophila Sensory Organ Precursor Cells
In Drosophila, mitotic neural progenitor cells asymmetrically segregate the cell fate determinant Numb in order to block Notch signaling in only one of the two daughter cells. Sanpodo, a membrane protein required for Notch signaling in asymmetrically dividing cells, is sequestered from the plasma membrane to intracellular vesicles in a Numb-dependent way after neural progenitor cell mitosis. Ho...
متن کاملAP-1 Controls the Trafficking of Notch and Sanpodo toward E-Cadherin Junctions in Sensory Organ Precursors
In Drosophila melanogaster, external sensory organs develop from a single sensory organ precursor (SOP). The SOP divides asymmetrically to generate daughter cells, whose fates are governed by differential Notch activation. Here we show that the clathrin adaptor AP-1 complex, localized at the trans Golgi network and in recycling endosomes, acts as a negative regulator of Notch signaling. Inactiv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 15 شماره
صفحات -
تاریخ انتشار 2005